(2-3:5-6- $\boldsymbol{\eta}$-Norbornadiene)propylidyneheptacarbonyltricobalt, Containing the $\mathbf{C o}_{\mathbf{3}} \mathbf{C}$ Tetrahedral Cluster

By Y. S. Ng and B. R. Penfold
Chemistry Department, University of Canterbury, Christchurch 1, New Zealand

(Received 4 January 1978; accepted 27 January 1978)

Abstract

C}_{2} \mathrm{H}_{5} \mathrm{CCo}_{3}(\mathrm{CO})_{7}\left(\pi-\mathrm{C}_{7} \mathrm{H}_{8}\right), \quad \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{7} \mathrm{Co}_{3}\), monoclinic, $P 2_{1} / c, a=9.764$ (1),$b=9.121$ (1), $c=$ 21.859 (3) $\AA, \beta=105.75$ (2) ${ }^{\circ}, V=1873.6 \AA^{3}, M_{r}=$ $506.09, D_{c}=1.79 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, \mu($ Mo $K(x)=27.64$ cm^{-1}. Two of the three Co atoms of a $\mathrm{Co}_{3} \mathrm{C}$ tetrahedral cluster are each coordinated by three terminal CO groups (two equatorial and one axial) while for the third Co atom, the two equatorial CO groups have been replaced by a norbornadiene molecule.

Introduction. Samples of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CCo}_{3}(\mathrm{CO})_{7}\left(\pi-\mathrm{C}_{7} \mathrm{H}_{8}\right)$ were kindly prepared by Dr B. H. Robinson (Elder, Robinson \& Simpson, 1975) and supplied as air-stable dark-red crystals. The monoclinic space group $P 2_{1} / c$ was established uniquely from systematic absences observed in photographs. A plate-shaped crystal $0.5 \times$ $0.23 \times 0.025 \mathrm{~mm}$ was chosen for intensity collection. 1753 reflections were recorded in the range of $0 \leq 2 \theta \leq$ 40° on a Hilger \& Watts four-circle diffractometer with Zr -filtered $\mathrm{Mo} K \propto$ radiation and $\theta-2 \theta$ scan techniques. Of these, 1008 had $I>3 \sigma(I)$ and were used in the structure determination and refinement. The detailed procedures for data collection and assignment of errors were as described by Countryman \& Penfold (1972). Absorption corrections (calculated by Gaussian integration) were applied and transmission factors ranged from 0.57 to 0.94 .
The structure was solved by the heavy-atom method, with all three Co atoms, located from the Patterson function, used for phasing. Subsequent least-squares refinement followed by difference syntheses showed all the remaining C and O atoms. Refinement with the three Co atoms anisotropic, the C and O atoms isotropic and H atoms fixed at their calculated positions gave $R=0.072$ and, after correction of the data for absorption, convergence was reached with $R=$ 0.053 for all 1008 reflections. In the full-matrix leastsquares procedures, the function minimized was $\sum w\left|\left|F_{o}\right|-\left|F_{c}\right|^{2}\right.$ and the weights w were $4\left|F_{o}\right|^{2} /\left(\sigma\left|F_{o}^{2}\right|\right)^{2}$. Scattering factors of Co, C and O were from Cromer \& Waber (1965), those for H from Stewart, Davidson \& Simpson (1965). Anomalousdispersion corrections for Co were from Cromer (1965). Positional and thermal parameters of all atoms are listed in Table 1, anisotropic thermal parameters of

Co atoms in Table 2. Selected bond distances and angles are given in Tables 3 and 4.*

[^0]Table 1. Atomic coordinates ($\times 10^{3}$) and thermal parameters

Table 2. Anisotropic thermal parameters $\left(\times 10^{4}\right)$ for the Co atoms (\AA^{2})
The expression for the anisotropic thermal ellipsoid is of the form $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$.

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\operatorname{Co(1)}$	$95(3)$	$101(3)$	$22(7)$	$4(3)$	$15(1)$	$3(1)$
$\operatorname{Co(2)}$	$108(3)$	$102(4)$	$24(7)$	$8(3)$	$17(1)$	$-4(1)$
$\operatorname{Co(3)}$	$123(3)$	$94(3)$	$24(7)$	$-3(3)$	$21(1)$	$0(1)$

Table 3. Bond lengths (\AA)
Mean values of bonds assumed to be chemically equivalent are italicized and their associated uncertainties are either r.m.s. deviations from the mean value or the mean of the individual standard deviations, whichever is the larger.

$\mathrm{Co}(1)-\mathrm{Co}(2)$	$2.483(3)$	$\mathrm{C}(11)-\mathrm{O}(11)$	$1.16(2)$
$\mathrm{Co}(1)-\mathrm{Co}(3)$	$2.475(3)$	$\mathrm{C}(21)-\mathrm{O}(21)$	$1.15(2)$
$\mathrm{Co}(2)-\mathrm{Co}(3)$	$2.470(3)$	$\mathrm{C}(31)-\mathrm{O}(31)$	$1.15(2)$
$\mathrm{Co}(1)-\mathrm{C}(1)$	$1.86(1)$	$\mathrm{C}(22)-\mathrm{O}(22)$	$1.19(2)$
$\mathrm{Co}(2)-\mathrm{C}(1)$	$1.88(2)$	$\mathrm{C}(23)-\mathrm{O}(23)$	$1.18(2)$
$\mathrm{Co}(3)-\mathrm{C}(1)$	$1.90(2)$	$\mathrm{C}(32)-\mathrm{O}(32)$	$1.16(2)$
$\mathrm{Co}-\mathrm{C}($ apical $)$	$1.88(2)$	$\mathrm{C}(33)-\mathrm{O}(33)$	$1.17(2)$
$\mathrm{Co}(1)-\mathrm{C}(11)$	$1.78(2)$	$\mathrm{C}-\mathrm{O}$	$1.16(2)$
$\mathrm{Co}(2)-\mathrm{C}(21)$	$1.77(2)$	$\mathrm{C}(4)-\mathrm{C}(9)$	$1.52(2)$
$\mathrm{Co}(3)-\mathrm{C}(12)$	$1.78(2)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.53(2)$
$\mathrm{Co}-\mathrm{CO}($ axial $)$	$1.78(2)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.62(2)$
$\mathrm{Co}(2)-\mathrm{C}(22)$	$1.69(2)$	$\mathrm{C}(6)-\mathrm{C}(10)$	$1.55(2)$
$\mathrm{Co}(2)-\mathrm{C}(23)$	$1.72(2)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.53(2)$
$\mathrm{Co}(3)-\mathrm{C}(32)$	$1.72(2)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.52(2)$
$\mathrm{Co}(3)-\mathrm{C}(33)$	$1.75(2)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.39(2)$
$\mathrm{Co-CO}($ equatorial $)$	$1.72(3)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.34(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.52(2)$		

Table 4. Bond angles (${ }^{\circ}$)

$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{Co}(3)$	$60 \cdot 0$ (1)	$\mathrm{C}(31)-\mathrm{Co}(3)-\mathrm{C}(32)$	99.3 (7)
$\mathrm{Co}(1)-\mathrm{Co}(3)-\mathrm{Co}(2)$	$60 \cdot 3$ (1)	$\mathrm{C}(31)-\mathrm{Co}(3)-\mathrm{C}(33)$	$103 \cdot 8$ (8)
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{Co}(3)$	59.8 (1)	$\mathrm{C}(22)-\mathrm{Co}(2)-\mathrm{C}(23)$	$100 \cdot 7$ (9)
$\mathrm{Co}(1)-\mathrm{C}(1)-\mathrm{Co}(2)$	83.0 (6)	$\mathrm{C}(32)-\mathrm{Co}(3)-\mathrm{C}(33)$	99.1 (9)
$\mathrm{Co}(1)-\mathrm{C}(1)-\mathrm{Co}(3)$	$82 \cdot 2$ (6)	$\mathrm{C}(11)-\mathrm{Co}(1)-\mathrm{Co}(2)$	93.4 (5)
$\mathrm{Co}(2)-\mathrm{C}(1)-\mathrm{Co}(3)$	81.4 (6)	$\mathrm{C}(11)-\mathrm{Co}(1)-\mathrm{Co}(3)$	93.8 (5)
$\mathrm{Co}-\mathrm{C}(1)-\mathrm{Co}$	$82 \cdot 2$	$\mathrm{C}(21)-\mathrm{Co}(2)-\mathrm{Co}(1)$	$103 \cdot 5$ (6)
$\mathrm{C}(1)-\mathrm{Co}(1)-\mathrm{Co}(2)$	48.9 (4)	$\mathrm{C}(31)-\mathrm{Co}(3)-\mathrm{Co}(1)$	105.9 (6)
$\mathrm{C}(1)-\mathrm{Co}(1)-\mathrm{Co}(3)$	49.6 (5)	$\mathrm{C}(21)-\mathrm{Co}(2)-\mathrm{Co}(3)$	100.1 (6)
$\mathrm{C}(1)-\mathrm{Co}(2)-\mathrm{Co}(1)$	48.2 (4)	$\mathrm{C}(31)-\mathrm{Co}(3)-\mathrm{Co}(2)$	96.9 (6)
$\mathrm{C}(1)-\mathrm{Co}(2)-\mathrm{Co}(3)$	49.6 (4)	$\mathrm{C}(22)-\mathrm{Co}(2)-\mathrm{Co}(1)$	92.9 (6)
$\mathrm{C}(1)-\mathrm{Co}(3)-\mathrm{Co}(1)$	$48 \cdot 2$ (4)	$\mathrm{C}(32)-\mathrm{Co}(3)-\mathrm{Co}(1)$	$90 \cdot 2$ (6)
$\mathrm{C}(1)-\mathrm{Co}(3)-\mathrm{Co}(2)$	49.0 (4)	$\mathrm{C}(23)-\mathrm{Co}(2)-\mathrm{Co}(3)$	97.6 (6)
$\mathrm{C}(1)-\mathrm{Co}-\mathrm{Co}$	48.9	$\mathrm{C}(33)-\mathrm{Co}(3)-\mathrm{Co}(2)$	102.2 (6)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Co}(1)$	132.5 (10)	$\mathrm{Co}(1)-\mathrm{C}(11)-\mathrm{O}(11)$	177.9 (15)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Co}(2)$	131.2 (10)	$\mathrm{Co}(2)-\mathrm{C}(21)-\mathrm{O}(21)$	174.8 (17)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Co}(3)$	128.0 (10)	$\mathrm{Co}(2)-\mathrm{C}(22)-\mathrm{O}(22)$	174.0 (19)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	123.9 (22)	$\mathrm{Co}(2)-\mathrm{C}(23)-\mathrm{O}(23)$	179.2 (16)
$\mathrm{C}(22)-\mathrm{Co}(2)-\mathrm{C}(1)$	102.4 (8)	$\mathrm{Co}(3)-\mathrm{C}(31)-\mathrm{O}(31)$	179.6 (15)
$\mathrm{C}(23)-\mathrm{Co}(2)-\mathrm{C}(1)$	101.0 (7)	$\mathrm{Co}(3)-\mathrm{C}(32)-\mathrm{O}(32)$	177.4 (16)
$\mathrm{C}(32)-\mathrm{Co}(3)-\mathrm{C}(1)$	106.1 (7)	$\mathrm{Co}(3)-\mathrm{C}(33)-\mathrm{O}(33)$	177.5 (15)
$\mathrm{C}(33)-\mathrm{Co}(3)-\mathrm{C}(1)$	98.8 (7)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	98.3 (12)
$\mathrm{C}(11)-\mathrm{Co}(1)-\mathrm{C}(1)$	$135 \cdot 3$ (7)	$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	101.3 (13)
$\mathrm{C}(21)-\mathrm{Co}(2)-\mathrm{C}(1)$	144.2 (7)	$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$100 \cdot 7$ (13)
$\mathrm{C}(31)-\mathrm{Co}(3)-\mathrm{C}(1)$	$142 \cdot 6$ (6)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$101 \cdot 1$ (14)
$\mathrm{C}(22)-\mathrm{Co}(2)-\mathrm{Co}(3)$	149.3 (6)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(10)$	98.7 (13)
$\mathrm{C}(23)-\mathrm{Co}(2)-\mathrm{Co}(1)$	148.6 (6)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(10)$	96.2 (13)
$\mathrm{C}(32)-\mathrm{Co}(3)-\mathrm{Co}(2)$	149.3 (6)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	108.6 (14)
$\mathrm{C}(33)-\mathrm{Co}(3)-\mathrm{Co}(1)$	147.0 (6)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	105.4 (14)
$\mathrm{C}(21)-\mathrm{Co}(2)-\mathrm{C}(22)$	$100 \cdot 0$ (9)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	108.1 (14)
$\mathrm{C}(21)-\mathrm{Co}(2)-\mathrm{C}(23)$	$101 \cdot 9$ (8)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$106 \cdot 8$ (14)
		$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(9)$	96.5 (13)

Discussion. Proton NMR studies have shown that methylidyne tricobalt norbornadiene derivatives are non-rigid in solution (Elder, Robinson \& Simpson, 1975). The present analysis was undertaken to establish the solid-state structure of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CCo}_{3}(\mathrm{CO})_{7}\left(\pi-\mathrm{C}_{7} \mathrm{H}_{8}\right)$ and compare it with similar complexes, where CO groups have been substituted by π donors. It had been proposed by Elder \& Robinson (1972) that the diene ligand replaces one equatorial and one axial carbonyl to give a structure cis-trans with respect to the $\mathrm{Co}_{3} \mathrm{C}$ apical C atom.

Figs. 1 and 2 show two different perspective views of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CCo}_{3}(\mathrm{CO})_{7}\left(\pi-\mathrm{C}_{7} \mathrm{H}_{8}\right)$. Fig. 1 shows the molecule with a view normal to the Co_{3} triangle while Fig. 2 presents a second view parallel to the Co_{3} triangle with the H atoms of the ethyl group included. The ligand is thus seen to coordinate in a cis-cis rather than a cistrans orientation, two equatorial carbonyls attached to one Co atom being replaced. Except for the ethyl group attached to the apical C atom of the $\mathrm{Co}_{3} \mathrm{C}$ core, the molecule has an idealized mirror plane through $\mathrm{Co}(1)$, $C(1), C(6), C(9), C(10), C(11)$ and $O(11)$.

The norbornadiene molecule is π-bonded to $\mathrm{Co}(1)$ via its two double bonds, $C(4)-C(5)$ and $C(7)-C(8)$, with a mean $\mathrm{Co}(1)-\mathrm{C}$ distance of $2 \cdot 14$ (2) \AA. This may

Fig. 1. One molecule of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CCO}_{3}(\mathrm{CO})_{7}\left(\pi-\mathrm{C}_{7} \mathrm{H}_{8}\right)$ viewed normal to the Co_{3} triangle. Co atoms are shown cross-hatched.

Fig. 2. The molecule viewed parallel to the Co_{3} triangle to illustrate the interaction between $\mathrm{Co}(1)$ and the norbornadiene ligand.
be compared with the 2.14 (2) \AA for the corresponding distances in $\mathrm{PhCCo}_{3}(\mathrm{CO})_{6}\left(\pi-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}\right)$ (Dellaca \& Penfold, 1972) where all three carbonyls from a single Co atom have been replaced by a six-electron donor. The structures of these two compounds may be contrasted with those of $\mathrm{PhCCo}_{3}(\mathrm{CO})_{6}\left(\pi-\mathrm{C}_{8} \mathrm{H}_{8}\right)$ (Brice, Dellaca, Penfold \& Spencer, 1971) and $\mathrm{PhCCo}_{3}(\mathrm{CO})_{6}-$ $\left(\pi-\mathrm{C}_{7} \mathrm{H}_{8}\right)$ (Holloway \& Penfold, 1977) in each of which a polyene ligand has replaced the axial carbonyls of three different Co atoms while still leaving the basic $\mathrm{Co}_{3} \mathrm{C}$ core and the remaining terminal carbonyls unchanged.
While the lengths of the coordinated double bonds of norbornadiene [mean $1.36(2) \AA$] do not differ significantly (1.5σ) from the value of $1.333 \AA$ observed in the free ligand (Wilcox, Winstein \& McMillan, 1960), the observed lengthening is certainly expected (Stephens, 1972). Corresponding values for the coordinated double bonds in other Co carbonyl norbornadiene complexes, e.g. $\mathrm{Co}_{2}(\mathrm{CO})_{5}\left(\pi-\mathrm{C}_{7} \mathrm{H}_{8}\right)$, $\mathrm{Ph}_{2} \mathrm{Sn}\left[\mathrm{Co}(\mathrm{CO})_{2}\left(\pi-\mathrm{C}_{7} \mathrm{H}_{8}\right)\right]_{2}$ and $\mathrm{Cl}_{2} \mathrm{Sn}\left[\mathrm{Co}(\mathrm{CO})_{2}(\pi-\right.$ $\left.\mathrm{C}_{7} \mathrm{H}_{8}\right) \mathrm{l}_{2}$, are 1.37 (1), 1.40 (2) and 1.40 (1) \AA with Co-C distances of $2 \cdot 16,2 \cdot 18$ and $2 \cdot 17 \AA$ respectively (Stephens, 1972; Boer \& Flynn, 1971).

The orientation of the norbornadiene molecule may be conveniently described in terms of the planar group $\mathrm{C}(4) \mathrm{C}(5) \mathrm{C}(7) \mathrm{C}(8)$ which makes an angle of 67.5° with the Co_{3} plane. An alternative description is in terms of the orientation of the π bonds to $\mathrm{Co}(1)$; there is an angle of 22.7° between the Co_{3} plane and the $\mathrm{Co}(1)$ -$\mathrm{C}(4-5) \mathrm{C}(7-8)$ plane, where $\mathrm{C}(4-5)$ and $\mathrm{C}(7-8)$ are the mid-points of the double bonds $\mathrm{C}(4)-\mathrm{C}(5)$ and $\mathrm{C}(7)-\mathrm{C}(8)$. This is to be compared with angles of 31.2 and 32.7° between the Co_{3} plane and planes formed by $\mathrm{Co}(2) \mathrm{C}(22) \mathrm{C}(23)$ and $\mathrm{Co}(3) \mathrm{C}(32) \mathrm{C}(33)$ respectively.

This orientation of the norbornadiene achieves a balance between non-bonded repulsions with the apical C atom [minimum $\mathrm{C}(1) \cdots \mathrm{C}(4) / \mathrm{C}(8)=2.91 \AA$] and the axial carbonyl bonded to $\mathrm{Co}(1)$ |minimum $\mathrm{C}(11) \cdots \mathrm{C}(5) / \mathrm{C}(7)=2 \cdot 70 \AA]$.

We are grateful to Dr B. H. Robinson, University of Otago, for supplying samples, and to the Research Committee of the New Zealand Universities Grants Committee for grants for equipment.

References

Boer, F. P. \& Flynn, J. J. (1971). J. Am. Chem. Soc. 93, 6495-6503.
Brice, M. D., Dellaca, R. J., Penfold, B. R. \& Spencer, J. L. (1971). Chem. Commun. pp. 72-73.

Countryman, R. \& Penfold, B. R. (1972). J. Cryst. Mol. Struct. 2, 281-290.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104109.

Dellaca, R. J. \& Penfold, B. R. (1972). Inorg. Chem. 11 , 1855-1858.
Elder, P. A. \& Robinson, B. H. (1972). J. Organomet. Chem. 36, C45-C47.
Elder, P. A., Robinson, B. H. \& Simpson, J. (1975). J. Chem. Soc. Dalton Trans. pp. 1771-1778.
Holloway, R. G. \& Penfold, B. R. (1977). Unpublished results.
Stephens, F. S. (1972). J. Chem. Soc. Dalton Trans. pp. 1754-1757.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Wilcox, C. F., Winstein, S. \& McMillan, W. H. (1960). J. Am. Chem. Soc. 82, 5450-5454.

Two Crystal Structures of Polymorphic Bis(glycine)manganese(II) Bromide Dihydrate

By T. GŁowiak and Z. Ciunik
Institute of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland

(Received 30 June 1977; accepted 10 February 1978)

Abstract

Two crystal structures of the polymorphic compound $\left[\mathrm{Mn}\left(-\mathrm{OOCCH}_{2} \mathrm{NH}_{3}^{+}\right)_{2}\left(\mathrm{OH}_{2}\right)_{2}\right] \mathrm{Br}_{2} \quad\left(M_{r}=\right.$ 400.9) have been determined: (I) monoclinic, $P 2_{1} / c$, $Z=2, a=11.943$ (3), $b=6.060$ (2), $c=8.979$ (2) \AA, $\beta=111.65(3)^{\circ}, V=604 \cdot 06 \AA^{3}, D_{m}=2 \cdot 21, D_{x}=2 \cdot 20$ $\mathrm{g} \mathrm{cm}^{-3}, \mu\left(\mathrm{Cu} K_{\mathrm{c}}\right)=182 \cdot 1 \mathrm{~cm}^{-1}$; (II) orthorhombic,

Pbca, $Z=8, a=21.613$ (5), $b=12.649$ (3), $c=$ 8.990 (2) $\AA, V=2457.7 \AA^{3}, D_{m}=2.15, D_{x}=2.17 \mathrm{~g}$ $\mathrm{cm}^{-3}, \mu(\mathrm{Cu} K \mathrm{~K})=197.0 \mathrm{~cm}^{-1}$. All measurements were made on a computer-controlled four-circle diffractometer with $\mathrm{Cu} K _$radiation. The final R_{1} values for 722 (I) and 1398 (II) reflections were 0.040 and 0.047

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33370 (6 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ. England.

